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Abstract

Introduction

Doxorubicin (DOX) is a widely used chemotherapeutic agent. Despite its high anticancer
capacities, DOX is notorious for its strong side effects. Common DOX associated side effects
are cardiotoxicity and palmar-plantar erythrodysesthesia (PPE). Recently, it’s determined that
DOX causes endothelial injury, however, the exact mechanisms remain unknown. Since it’s
known that Kruppel-like factor 2 (KLF2) plays a crucial role in maintaining endothelial
function, there might be a potential role for KLF2 in the DOX-induced side effects.

In this study, we examined the role of KLF2 in the DOX-induced endothelial damage, and the
possibility for pharmacological intervention by statins.

Materials and Methods

Primary human umbilical vein endothelial cells (HUVECs) were used to determine the
expression of KLF2 and its target genes after DOX treatment. To investigate if DOX
treatment leads to apoptosis in ECs, we used both a MTT and flow cytometry assay to
quantify apoptosis in DOX-treated cells. In addition, we evaluated the expression of
vasoprotective genes under vasoprotective shear stress conditions, using a previously
developed Dynamic Flow System (DFS). Moreover, we evaluated the effect of Simvastatin
treatment prior and simultaneously on DOX treatment.

Results

The expression of KLF2 and its vasoprotective transcriptional target genes, as well as other
endothelial vasoprotective genes were significantly altered after DOX treatment at different
concentrations under static culture conditions. The MTT assay showed that there was no
significant difference between the used concentrations and the vehicle in regard to cell death.
In addition, flow cytometry analyses documented that there was no difference in apoptotic
cells between DOX treated and untreated cells. The expression of KLF2 in the vasoprotective
shear stress environment was curtailed after DOX treatment, and angiopoietin-2 (Ang-2) was
strongly upregulated. Importantly, we also showed that the effect of DOX on vasoprotective
genes can be rescued after statin treatment.

Conclusions

DOX treatment in HUVECsS leads to an important change in the expression of vasoprotective
genes. Moreover, we show that statins could rescue the gene alterations when administrated
simultaneously, which might be an easy implementable addition to DOX treatment in the
clinical setting. However, in vivo experiments, and human trials need to be done to draw final
conclusions.
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Samenvatting

Introductie

Doxorubicine (DOX) is een vaak gebruikt chemotherapeuticum. Ondanks de goede anti-
kanker eigenschap is DOX berucht om de endothiale toxiciteit dat het veroorzaakt.
Cardiotoxiciteit en de palmar-plantar-erythrodysesthesia (PPE) zijn vaak geobserveerde
bijwerkingen na behandeling met DOX. Recentelijk is het ontdekt dat DOX endotheleel
schade veroorzaakt, echter, het exacte mechanisme blijft onduidelijk. Sinds het bekend is dat
KLF2 een belangrijke rol speelt in het behoud van endotheel functie, is er een mogelijke rol
voor KLF2 in de DOX veroorzaakte bijwerkingen. In deze studie hebben we de rol van KLF2
onderzocht in de DOX geinduceerde endotheel schade. Daarnaast hebben we gekeken naar de
mogelijkheid om dit effect te kunnen blokkeren doormiddel van statines toe te dienen.

Materiaal en Methoden

Primaire human umbilical vein endothelial cells (HUVECSs) zijn gebruikt om de expressie van
KLF2 en de door KLF2 gereguleerde genen te bepalen. Om te onderzoeken of DOX
behandeling leidt tot apoptose, hebben we zowel een MTT test als een flow cytometry assay
uitgevoerd om het aantal apoptotische cellen te bepalen. Daarnaast hebben we de expressie
van vasoprotectieve genen in endotheel cellen bepaald na behandeldeling met DOX tijdens
blootstelling aan een vasoprotectieve, shear stress omgeving. Hierbij werd gebruikt gemaakt
van een eerder ontwikkelend Dynamic Flow System (DFS). Tevens hebben we het effect van
Simvastatine behandeling voor en tijdens DOX behandeling bepaald.

Resultaten

De expressie van KLF2 en de door KLF2 gereguleerde vasoprotectieve genen, en tevens
andere vasoprotectieve genen bleek significant veranderd na behandeling met DOX in
verschillende concentraties onder statische groei condities. De MTT test liet zien dat er geen
sprake is van apoptotische cellen wanneer de verschillende concentraties vergeleken worden
met de controle groep. Daarnaast liet ook de flow cytometry test zien dat er geen sprake was
van apoptose in de DOX behandelde groep. De expressie van KLF2 na DOX behandeling in
de vasoprotectieve shear stress omgeving was zelfs meer verlaagd vergeleken met de statische
condities. Ditzelfde gold voor de toename in Angiopoietin 2 (Ang-2) expressie. Daarnaast
hebben we aangetoond dat Simvastatine het effect van DOX op vasoprotectieve genen kan
beperken.

Conclusies

DOX behandeling leidt tot belangrijke verandering in de expressie van vasoprotectieve genen.
Daarnaast tonen we aan dat statines deze verandering kunnen beperken wanneer ze
tegelijkertijd worden toegediend. Dit zou een makkelijk uitvoerbare toevoeging kunnen zijn
aan DOX behandeling in de kliniek. Desalniettemin moeten er in vivo experimenten worden
uitgevoerd om definitieve conclusies te kunnen trekken.
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Introduction

Doxorubicin (DOX), also known as Adriamycin, is one of the most common used
chemotherapeutic drugs for the treatment of leukemia’s, sarcomas, and breast cancers (1-3).
Besides, although less prescribed, DOX is also used in cancers of the stomach, lungs, ovaries,
thyroid as in soft tissue sarcoma’s and multiple myeloma’s. Commonly used DOX-containing
regimens are CA (cyclophosphamide, Adriamycin), TAC (Taxotere, CA), ABVD
(Adriamycin, Bleomycin, Vinblastine, Dacarbabzine), CHOP (Cyclophosmphamide,
Adriamycin,  Vincristine, Prednisone) and FAC  (5-Fluorouracil, = Adriamycin,
Cyclophosphamide) (4).

Historical perspective

The history of DOX goes back to the early 1950’s, when both an Italian and French research
group, independently began to look into soil-based microbes to find new anticancer
compounds at the same time. A soil sample was isolated which contained a new strain of
Streptomyces Peucetius. The antibiotic produced from this strain seemed to have a good
activity against mouse tumours. Together, both groups named the compound Daunirubicin,
where Dauni referred to a pre-Roman tribe that occupied the area where the compound was
isolated, and ruby, rubis, referred to the color (5). From the 1960’s, clinical trails began and
showed hopeful results in the treatment of acute leukemia and lymphoma. However, while
undetected in animal studies (6), by 1967, clinical trails showed that Daunirubicin could lead
to fatal cardiac toxicity. After these results, modifications were made to the compound, what
resulted in a different, red-colored antibiotic. This compound was named Adriamycin, after
the Adriatic Sea, and the name was later changed to Doxorubicin, to establish naming
convention. Daunirubicin was known to be highly effective against acute lymphoblastic and
myeloblastic leukemia’s, while DOX became interesting since it had a much broader
anticancer spectrum, which includes several solid tumours in addition to hematological
malignancies. DOX showed a better activity to tumours and a higher therapeutic index
compared to Daunirubicin. However, the cardiotoxicity remained. From then on, studies
established the cumulative dose of anthracyclins, also known as anthracycline antibiotics, the
class of drugs where DOX belongs to, as the main risk factor for cardiotoxicity (7,8). Dauni-
and Doxorubicin can be seen as the first anthracycline anitibiotics, and today, it is estimated
that there are more than 2,000 known analogs of DOX. However, only a few of them are
approved for clinical use (9).

Side effects, clinical relevance

Nowadays, DOX is widely used in the treatment of several cancers, both for adults and
children. The American Cancer Society estimated that in 2010, 1,150,000 people received
DOX as a first choice treatment of breast cancer and soft tissue carcinoma in the US (4).
Often seen side effects of DOX are cardiotoxicity and palmar-plantar erythrodysesthesia
(PPE), which could limit the administration, which in turn, might lead to undesirable delays in
the treatment. Recently, it’s shown that DOX may have serious injurious effects on the
vascular endothelium, including apoptosis of endothelial cells (ECs), which leads to
endothelial injury(10-12).

Endothelial dysfunction

The last years, there has been a growing interest in the role of DOX on the vascular
endothelium. In a recent study of Jenei et al. it’s found that anthrycyclines lead to an impaired
endothelial and vascular function (13). Besides, it’s known that DOX leads to both
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HARVARD
MEDICAL SCHOOL

cardiomyocyte and endothelial cell apoptosis, which may play an important role in DOX-
induced cardiomyopathy (12). This impaired endothelial function is an important and recently
recognized toxicity since endothelial dysfunction is an early event in atherogenesis (14).
These unfavorable changes can be considered not only as risk factors but as earliest
subclinical markers of development of clinically relevant CVD also (13).

university of
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Cardiotoxicicty

Cardiotoxicity is a life threatening side effect and depends on the cumulative dosage of DOX,
and is divided into four forms. The acute form is the most common, with typical
complications as vasodilation, hypotension and transient cardiac rhythm disturbances (15),
however these symptoms resolve usually shortly after the end of administration. Subchronic
cardiotoxicity 1s extremely rare and happens within 1-3 days after administration and occurs
as pericarditis-myocarditis. Early chronic cardiotoxicity develops weeks to months after the
completion of the chemotherapy and is characterized by dilated cardiomyopathy, which can
lead to left ventricular contractile dysfunction and congestive heart failure (CHF) (9).

The delayed cardiotoxicy due to anthracycline treatment, is known for the fact that it can
cause cardiotoxicity even decades after the anthracycline treatment (16-19).

In a recent study from Eckman et al., it’s found that DOX treatment leads to increased wall
thickness of the medial and adventitial layers in the microcirculatory coronary wall, which, in
turn, possibly could lead to myocardial ischemia. In addition to this, it’s already shown that
anthracycline exposure increases the incidence of vascular events, including myocardial
ischemia and stroke (20).

Moreover, although in a small trail, it’s determined that even low to moderate dose of DOX
treatment can cause left ventricular dysfunction and aortic stiffness early after exposure, and
this remained at least 6 months after the treatment was stopped (21).

Despite the fact that authors can not agree on the incidence of DOX-induced cardiotoxicity, it
is clearly a major problem in the treated population since numbers vary between 7-26% of
patients which develop CHF after treatment of a cumulative dosage of 550 mg/m> DOX
(8,22). At this moment, there is no curative treatment of this DOX-induced cardiotoxicity
besides the aim to prevent existing cardiomyopathy from worsening (23).

Palmar-plantar erythrodysesthesia

PPE is a cutaneous drug reaction that is mostly induced by chemotherapeutic agents (24), and
DOX is one of the most common causers. Despite the fact that the actual incidence is very
difficult to determine, estimations vary between 22-89% of patients that develop PPE after
DOX administration, dependent on different treatment regimens (25-27). Despite the
chemotherapeutic agent, the symptoms are very similar, and seem to be dose-dependent. The
majority of the patients develop a prodrome of dysesthesia of the palms and soles. Within a
few days, this progresses to burning pain with swelling (edema) and erythema. The pain may
be so severe that daily activities are limited (24). PPE can occur within days (24h to 2-3
weeks) or after months (2-10 months), dependent on the treatment regimen. The cause of PPE
remains unknown, and unfortunately, there is at the time of writing not a proven therapy for
PPE other than dose reduction, lengthening of the drug administration interval and ultimately
drug withdrawal (24).

Mechanism of action

In today’s cancer research, it is an important challenge to understand how DOX works, and
what the mechanistic pathways are associated with its therapeutic effects and toxicity. Despite
their extensive use, the exact therapeutic mechanism of DOX remains unclear and apparently
it is a combination of several different mechanisms, which in turn, account for the high
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efficacy of this class of drugs (9). However, recent studies have determined that DOX acts on
tumor cells in two independent manners; by the inhibition of topoisomerase I and II, and by
the intercalation into the DNA double helix to interfere with its uncoiling, ultimately inducing
cell death (28,29).

Two independent groups have shown that these two potential mechanisms might be able to
explain the anti-tumour effects of DOX. Zhang et al. showed that Top2b gene lacking mice
have a diminished cardiotoxicity after DOX administration (28). They state, in accordance to
previous studies, that DOX helps to stabilize the complexes of double-stranded DNA and
topoisomerase Il enzyme and that topoisomerase seems to be responsible for both the toxicity
to normal cells as the tumour cells (Figure 1 right).
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The second mechanism, determined by Denard et al., involves the fact that DOX treatment
leads to an increased production of ceramides inside the cells, which in turn, leads to the
translocation of the latent transcription factor CREB3BL1, and ultimately to cell cycle arrest
(29) (Figure 1 left).

As both authors conclude, these mechanisms are only the first steps in the discovery of the
DOX pathway and the DOX-induced toxicity, which remains not fully understood (30).
Furthermore, DNA strand breaks may trigger apoptosis of cancer cells, apparently via the
p53-dependent pathway (31).

Another theory is that increased oxidative stress due to reactive oxygen species production
(ROS) may explain the undesirable side effects of DOX. Many studies attribute ROS to be a
major factor in DOX-induced cardiotoxicity. The type of cell death due to DOX
administration is dependent on the dose and cell line, however, previous studies have shown
that cardiomyocytes are susceptible for all four types of cell death (apoptosis, autopsy,
necrosis and senescence) (32).

However, it remains unclear if oxidative stress acts as the main trigger or the key executor of
anthracycline induced cardiotoxicity, and ROS formation might be a secondary consequence
of previous cellular and mitochondrial damage (9).

As written, many studies have determined that DOX leads to apoptosis, and therefore when
acting in vascular cells may cause vascular leakage (33,34). These studies found that this
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+
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endothelial dysfunction may be the result from independent effects on ATP and/or GSH
metabolism (33). It’s also thought that DOX-induced, metal-catalyzed production of H,O,
plays a role both in the toxicity to ECs and cardiomyocytes (35).

s university of
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Despite the fact that there is a broad consensus about DOX and its cardiovascular side effects,
it remains unclear by what mechanism DOX treatment causes endothelial dysfunction.
Concluding all the previous work, the shared idea is that DOX induces vascular injury due to
cell death.

DOX induces vascular damage, the role of KLF2

It is determined that anthracyclines damage the vascular endothelium, which leads to
endothelial dysfunction (10,11,36). This results in a dysfunctional vascular homeostasis,
which will lead to edema and compromising organ dysfunction. In regard to this, two recent
articles were published which found that DOX causes impaired vascular function in long-term
survivors of cancer, which is an early marker of cardiovascular diseases (CVD) (13,37).

Kruppel-like factors (KLFs), are a subclass of the zinc finger transcription family of
transcription factors that can regulate multiple cellular functions and tissue development (38).
KLF2 is expressed in the endothelium of the vasculature and is required for normal vessel
development (39,40). Two of the most powerful known inducers of KLF2 expression in the
endothelium are blood flow-derived shear stress and statins (41-43). It’s known that KLF2
expression involves activation of a MEKS5/ERKS5/MEF2 pathway, and that MEKS activation
is necessary for wup-regulation of KLF2 in the vascular endothelium (44).
Moreover, KLF2 attenuates the cytokine-mediated induction of proinflammatory molecules
(e.g. E-selectin and VCAM-1), which induces gene expression of antithrombotic molecules
(e.g. Thrombomodulin) (42,45,46).

In contrast, decay in KLF2 expression plays a key role in the loss of endothelial barrier
function, which results in increased vascular permeability, tissue edema and inflammation
(47). Because the majority of these events are also seen as serious side effects after DOX
administration, we suggest that there might be an important role for KLF2 in the vascular
changes after DOX treatment.

Statins, also known as HMG-Coa reductase inhibitors, have beneficial effects on
atherogenesis in addition to their lipid-lowering action. Examples of these effects include the
up-regulation of the production of NO in ECs, decreased proliferation of vascular smooth
muscle cells (SMCs), inhibition of platelet activation, and increased fibrinolytic activity
(48,49). In the recent past, investigators gained an increased interest for statins in the field of
(renal) transplantation, and it’s shown that statins can rescue the KLF2 expression after flow
cessation (50). Furthermore, it’s found that Simvastatin-treated kidneys showed a diminished
EC-EC gap formation after transplantation (47).

As written earlier, it’s thought that the DOX-induced vascular injury is induced by apoptosis
of endothelial cells. In this work we focused on the expression of the endothelial
vasoprotective KLF2 gene, and used clinical, non-apoptotic DOX concentrations, to assess
endothelial dysfunction instead of endothelial injury. Moreover, we looked for the possibility
of pharmacologic intervention using statins. Therefore, our research question was: Does
Doxorubicin lead to a downregulated KLF2 expression, and could this alteration be rescued
by statins? We hypothesize that the DOX-induced vascular dysfunction occurs through a
KLF? dependent mechanism, which could be ameliorated by statins.

Research Report F.J. Voskuil 10
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Material and Methods

DOX treatment on HUVECs (analysis of different concentrations)

Primary human umbilical vein endothelial cells (HUVECs) were isolated and cultured as
previously described (42,51). Briefly, HUVECs cultured in Medium-199 (BioWhittaker,
Lonza Inc, Basel, Switserland) supplemented with 50mg/ml EC growth supplement (BT-203,
Biomedical Technologies Inc., Stoughton, MA), 100mg/ml heparin (Sigma, Saint Louis, MO,
USA), 100units/ml penicillin plus 100ug/ml streptomycin (BioWhittaker), 2mM L-glutamine
(GIBCO, Carlsbad, CA), and 20% fetal bovine serum (BioWhittaker) were plated on 0.1%
gelatin (Difco, BD, Sparks, MD)-coated plastic C6 wells and maintained at 37°C 5% CO, in
the incubator for 24hr of static culture. After 24h, the medium was changed and Doxorubicin
Hydrochloride (Sigma-Aldrich, Saint Louis, MO, USA) in DMSO (Sigma-Aldrich, Saint
Louis, MO, USA) was added in different concentrations and cultured for 24h.

Analysis of apoptosis of HUVECs after DOX treatment using the MTT assay

To determine if the used concentrations do not lead to apoptosis of the endothelial cells, we
performed a MTT cell viability assay. After 24h of static culture in a 96-well plate as
described above, we changed the medium and added DOX in different concentrations,
including a positive control (Ong/ml, 10 ng/ml, 100ng/ml, 250ng/ml and 2500ng/ml) and
cultured ECs again for 24h. After 24h, the medium was aspirated and Thiazolyl Blue
Tetrazolium Bromide (MTT) (Sigma-Aldrich, Saint Louis, MO, USA) (5mg/ml in medium)
was added. After 3h, the MTT was aspirated and the Formazan (MTT metabolic product) was
resuspended in isopropanol for Smin. The absorption was read in a plate reader at 560nm with
a 670nm background. Blank wells served as negative control.

Quantification of apoptosis using Annexin V and propidium iodide

To validate and further characterize our apoptosis data, we performed FACS analyses to
quantify the apoptosis in ECs after DOX treatment. After 24h of static culture, we changed
the medium and added DOX (250ng/ml) and cultured the ECs again for 24h. After 24h,
floating cells in the treatment media and in the wash-effluent of DPBS (- CaH/MgH) were
saved and pooled with the adherent cells that had been removed with a brief treatment of
trypsin/EDTA (BioWhittaker) + DPBS. Cells were spun down, resuspended, and double
stained with propidium iodide / Annexin V-FITC and counted by flow cytometry according to
the manufacturer’s instructions (BD Pharmingen 556547).

DOX treatment on HUVECs using a Dynamic Flow System

To mimic physiological conditions, we exposed cells to shear stress using a Dynamic Flow
System (DFS). This DFS is a multicomponent cone and plate device that mimics the
physiological shear stress in the human vessels. The design consists a microscope stage, with
a transparent cone and plate surface, which gives the ability that the cells can be easily
visualized under dynamic flow via microscopy. This system is previously developed in our
laboratory (42,51).

The machine is able to mimic different waveforms that are generated by the drive system and
controlled with microstepper motor technology (Parker Hannifin, Rohnert Park, CA). With
software (Compumotor 6000, Rohnert Park, CA), the different waveforms can be simulated,
ranging from laminar flow to more complex arterial waveforms.
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ey
A g university of
'§§ groningen

HARVARD
MEDICAL SCHOOL

> Atheroprotective
Shear Stress
—_—

-

C O © . © B © W Endothelial Cells

Gelatin Coating

Figure 2: Schematic view of DFS. Endothelial cells, plated on 0.1% Gelatin coating are exposed
to atheroprotective flow.

To mimic a physiological environment, the device includes two access ports in the well that
permit continues exchange of fresh media. Another benefit of these ports is that there is the
ability to introduce pharmacological agents without disturbing the experiment or flow
conditions. The wells are heated by an external heater (Atlanti Thermal Co., Hopedale, MA),
which controls the temperature at 37°C. The device is covered with a transparent litter which
maintains the environment at 5% CO2 in humidified air.
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Primary HUVECs were isolated and cultured as described above. After 24h, the static EC
growth medium was replaced for shear medium (Medium- 199, 20% fetal bovine serum, 2
mM  L-glutamine, 100units/mL penicillin plus 100ug/mL streptomycin, and 2% dextran
(Sigma)). To achieve physiologic levels of KLF2 expression in cultured ECs, which is
previously shown by our group (42), we exposed ECs to vasoprotective flow
(atheroprotective shear stress waveform (42)) using a DFS. After 24h, the shear stress
medium was changed for fresh shear stress medium with 250ng/ml DOX and we exposed the
ECs to shear stress for another 24h. For each set of experiments, two identical flow devices
were used at the same time. One of them was used for the DOX addition, the other one was
used a control. At the same time, to plates were cultured under static (no flow) conditions

Research Report F.J. Voskuil 12



5300 52 e

3 7 university of
groningen

HARVARD
MEDICAL ScHooL

with the same experimental set up and the same isolate of cells, to compare static vs. shear
stress.

Simvastatin treatments

Primary HUVECs were isolated and cultured as described above. After 24h of static culture,
culture medium was changed for fresh culture medium with Simvastatin (10uM in DMSO)
(Merck KGaA, Darmstadt, Germany). After 24h, medium was exchanged for fresh medium
with Simvastatin (10uM) and DOX (250ng/ml).

Figure 4: Timeline of static Simvastatin experiment.

RNA isolation and RT-TagMan PCR Analysis

ECs were rinsed twice with cold phosphate buffered saline (PBS) and the total RNA from
ECs was i1solated and purified using the Prism Nucleic Acid Prep-Station (Applied
Biosystems, Foster City, CA) according to manufacturer’s protocol. RNA quality was verified
using Agilent’s 2100 Bioanalyzer. RNA was reverse transcribed to cDNA using a
MultiScribe-based reaction (Applied Biosystems). cDNA templates were amplified by real-
time TagMan polymerase chain reaction (PCR) on an ABI Prism 7900HT Fast Detection
System (Applied Biosystems). Expression of KLF2, eNOS, TM, CNP, VEGF, Ang-2, TIE2,
PTGDS, ASS, VEGFR2 was analyzed using predesigned gene expression assays obtained
from Applied Biosystems according to the manufacturer’s protocol and reported relative to
endogenous control GAPDH. All PCR reactions were performed in duplicate and using
nuclease-free water as no template control.

Statistical analysis
Statistical analysis was performed using Microsoft Excel Software. Student’s #-test was used

for comparing differences between two groups. Differences were considered significant at P <
0.05.

Research Report F.J. Voskuil 13



7 university of
groningen
HARVARD
MEDICAL SCHOOL

Results

DOX treatment affects the expression of KLF2, eNOS and ANGPT2

To determine the effects of DOX treatment on KLF2 expression, we first generated a dose
response curve. In patients, the plasma concentration of DOX after administration shows a
peak concentration of approximately 500-1500ng/ml, with a rapid decrease in the first hour.
During the first hour, the concentration decreases to 150-500ng/ml (52,53). To look into
clinical relevant concentrations, without leading apoptosis of the cells, we used DOX
concentrations in the range between 10-250ng/ml.

Although it’s difficult to choose a single clinical relevant concentration, we assume that this
range will cover the plasma concentrations after the first hours of administration. We cultured
ECs, and after 24h we added DOX in different concentrations and cultured ECs again for 24h.
As shown in Figure 5A, ECs treated with DOX react in a dose dependent manner on KLF2
expression compared to the vehicle. Simultaneously, we looked for several other genes that
play a role in the vasoprotective phenotype of the vessels. eNOS mRNA levels, a
downstream-regulated target gene of KLF2, are also significantly decreased by DOX (Figure
5B). Remarkably, DOX treatment increases Ang-2 mRNA levels, a vessel-destabilizing gene
(Figure 5C). VEGF, CNP and Thrombomodulin did not show any significance difference
(data not shown).
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DOX treatment does not decrease cell viability

Previously, authors demonstrated that high doses of DOX (>500ng/ml) lead to apoptosis in
endothelial cells (34,54). To validate our data, we want to determine if the used
concentrations in our experiments did not lead to cell death. To begin documenting this, we
performed a cell viability MTT assay. As shown in Figure 6, there is no significant difference
between the vehicle and the different used concentrations, except for the positive control.
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DOX treatment does not lead to apoptosis using flow cytometry
To validate and further characterize our earlier obtained data where we have shown that the
used concentrations did not lead to apoptosis, we performed a specific apoptosis assay using
flow cytometry. After 24h culture, we treated cells with DOX or its vehicle (DMSO). After
24h, we collected both floating cells in the treatment media and in the wash-effluent, together
with the adherent cells. We double stained the cells with propidium iodide / Annexin V-FITC
and counted the cells by flow cytometry. As shown in Figure 7, there was no significant
difference in the expression of PI and Annexin V between DOX treated cells or its vehicle.
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DOX treatment leads to an altered gene expression under shear stress

Our lab and others have previously shown that flow-mediated shear stress induces the
vasoprotective transcription factor KLF2, that plays a role in the maintenance of the
vasoprotective phenotype of the endothelium (41,42), besides, it is required for normal vessel
development (39,40). After the KLF2, eNOS and Ang-2 alterations in our static experiment,
we asked the question if these changes, or maybe even bigger changes, could be found under
shear stress as well, since we know from earlier studies that the total KLF2 expression is at
least 10x higher during flow-mediated shear stress (55). After we plated the cells for 24h on
the DFS plates under static conditions, we exposed the cells for 24h to shear stress, to achieve
physiological levels of vasoprotective genes. After 24h, shear medium was changed and DOX
was added. As shown in Figure 8, ECs treated with DOX show a more than 7x decrease in
KLF2 expression when exposed to vasoprotective laminar shear stress. Furthermore, although
not significant, Ang-2 mRNA shows the same trend as seen in static cultures after DOX
treatment after shear stress exposure (p=0.06). eNOS, TM, CNP and VEGF did also not show
any significance difference.
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Figure 8: Gene expression after DOX treatment under shear stress. LEFT: Gene expression after DOX
treatment under static conditions (N=2). RIGHT: Gene expression after DOX treatment under laminar
shear stress conditions (*P<0.05 vs. vehicle. N=3)
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Statins can rescue the KLF2 drop after DOX treatment

It is previously demonstrated that KLF2 expression is induced by shear stress, and that KLF2
expression an important factor is for the maintenance of vasoprotective phenotype in the
vessels (41,42). Gracia-Sancho et al. have recently demonstrated that the KLF2 decay due to
flow cessation could be rescued with Simvastatin treatment, as well as its downstream target
genes. Besides, they concluded that KLF2 mediates the Simvastatin induced maintenance of
the vasoprotective phenotype (55). Because we showed that DOX significantly decreases
KLF2 expression in ECs, as well as some of its downstream target genes, we aimed to test the
effect of Simvastatin on the expression of KLF2 and the KLF2-dependent target genes. We
cultured ECs for 24h to achieve a confluent monolayer. After 24h, we added Simvastatin, to
augment the KLF2 expression, which leads to more physiological levels of KLF2 expression.
Finally, we added DOX for another 24h. As shown in Figure 9A, KLF2 mRNA expression is
significant reduced compared to its control. Moreover, this reduce is significantly rescued
with Simvastatin treatment. We next asked the question if Simvastatin also could rescue the
vasoprotective target genes. As shown in Figure 9B, both the eNOS drop, and the Ang-2
increase could be rescued with Simvastatin treatment (Figure 9C). To show that the
alterations in gene expression are specific for some genes, we here show that PTGDS mRNA
does not change after DOX treatment (Figure 9D).
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Discussion

Over the last 50 years, the treatment of cancer patients has significantly improved, and more
patients survive this disease. However, the improvements in treatment regimens are
accompanied by short and long term effects of the treatment, impacting quality of life (37). In
regard to this, there is paid a lot attention to the side effects of cancer treatment with
anthracyclines. Anthracyclines are notorious for their cardiotoxicity, whether causing acute
(characterized by tachyarrhythmia and it occurs during the course of high dose
administration) or chronic heart failure (seems to be dose-dependent). Eventually, both have
the ability to induce or contribute to cardiomyopathy, dysfunction and ultimately heart failure
(56). In the present study, we focused on DOX, an anthracycline that is known for over 60
years for its anticancer treatment.

Several studies have attempted to find the mechanism of DOX-induced cardiotoxicity, and
many studies attribute ROS to be a major contributor in this cardiotoxicity, however, there is
no consensus reached about the role of ROS in the DOX-induced cardiotoxicity (9). It is also
thought that many other mechanisms such as the p53 pathway with a possible role for ERK2,
the Bcl-2/Bax pathway (9) and the caspase-3 family are involved (12,57,58). Besides the
cardiovascular side effects, DOX is also a well known inducer of PPE, a frequent toxic
reaction of the skin related to chemotherapeutic agents. PPE presents with variable severity
and can necessitate modification of the chemotherapy treatment schedule(24). One of the
shared features of these side effects is the vessel damage, which is induced by DOX.

Many articles have been published about the DOX-induced endothelial damage, and the
shared idea of these studies is that endothelial dysfunction occurs through apoptosis by
several mechanisms (59-64).

In the present study, we show that DOX treatment of HUVECs leads to endothelial
dysfunction, but not to apoptosis when using clinical relevant concentrations, which could
contribute to new insides of the development of the DOX related side effects.

In our first experiment, we show that KLF2 mRNA and its downstream target gene eNOS
mRNA are both significantly decreased, in a dose-dependent manner. Moreover, Ang-2
mRNA expression is, again in a dose-dependent manner, upregulated after Ang-2 expression.

KLF2, eNOS and Ang-2 show a respectively 5x, 10x and 8x altered gene expression after
DOX treatment.

Our laboratory and others have demonstrated that KLF2 acts as a critical mediator for the
establishment of vasoprotective phenothype (41,42,50).

Ang-2 is a member of the angiopoietin family. Angiopoietins play an essential role in
angiogenesis. Angiopoietin-1 (Ang-1) stabilizes blood vessels and acts as an anti-permeability
factor to prevent vascular leakage (65). In contrast, Ang-2 serves as an inhibitor of Ang-1
activity, and thus leads to disruption of vessel integrity as well a disassembly of cellular
compounds (66). Zan et al. found that Ang-2 increases in parallel with a vascular permeability
increase (67). When taken together, these data could potentially explain the vessel damage
after DOX treatment since two ‘endothelial protection’ genes (KLF2 and eNOS) are
downregulated, and a vessel-destabilizing gene (Ang-2) is upregulated after DOX treatment.

Many studies have attributed apoptosis as a key factor in the vascular damage that DOX
treatment entails. In a broad range of used concentrations, DOX causes apoptosis both in vitro
and in vivo (34,36,54). To determine if our findings in regard to the earlier shown gene
alterations can be contributed to endothelial dysfunction, we performed an endothelial cell
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To verify our earlier obtained data in regard to the apoptosis, we performed a more precise
flow cytometry assay, to quantify the amount of necrotic and apoptotic cells.

Our results show that there is no difference in the amount of necrotic and apoptotic cells
between untreated and DOX treated ECs. With these data, we show again that DOX treatment
in ECs did not lead to apoptosis, and again, from which we can conclude that there is a
possible role for endothelial dysfunction after DOX treatment, instead of endothelial cell
apoptosis.

It’s previously shown that KLF2 is selectively induced in ECs that are exposed to a
biomechanical stimulus. KLF2 is identified for the first time as a gene regulated by steady
laminar shear stress in ECs by Dekker et al. 2005 (41).

Parmar et al. showed that in the atheroprotected regions of the human carotid, but not in
atheroprone regions, KLF2 is upregulated via a MEKS/ERKS5/MEF2 signaling pathway.
Moreover, MEKS5 seems to be both necessary and sufficient for the upregulation of KLF2
(42). In a recent study from our lab, it’s shown that KLF2 mRNA in ECs under shear stress is
more than 10x higher compared to static conditions (50). In the present study, we show that
KLF2 is more than 7x downregulated after DOX treatment in a vasoprotective shear stress
environment. Besides, we show that Ang-2 is, again, although not significant, upregulated.

As shown, the vasoprotective KLF2 gene is almost completely knocked down after DOX
treatment, even when the cells are exposed to the vasoprotective shear stress environment,
which could explain the undesirable side effects of DOX. It can be speculated that this KLF2
drop plays an important role in the vessel damage, since we know that KLF2 decay can lead
to EC-EC gap formation, which participates in the formation of edema (47). Moreover, as
discussed earlier, an Ang-2 upregulation, might explain the vascular leakage what is observed
after DOX treatment.

It’s previously shown by our lab and others that statins have beneficial effects on
atherogenesis in addition to their lipid-lowering action. Statins induce the expression of KLF2
in ECs, which leads to the establishment of a vasoprotective phenotype (43). It is found that
KLF2 acts as a key regulator of several endothelial functions, including but not limited to
blood vessel formation, control of vascular tone, inflammation, and coagulation (43).
However, the exact mechanism how KLF2 is induced by statins remains not fully understood.
It’s thought that signaling molecules such as MEF2 and Akt are necessary for statin-mediated
KLF2 expressin (68). Nevertheless, three often used statins, namely Simvastatin, Cerivastatin
and Lovastatin, showed an increased KLF2 mRNA expression (43). Recently, Gracia-Sancho
et al. founded that statins, when used as a supplement in an organ preservation solution, are
capable of maintaining the expression of important vasoprotective genes in HUVECs through
a KLF2-dependent mechanism (55). To see if we could rescue the KLF2 drop, and its
downstream regulated target genes, after DOX administration, we performed an experiment
where we treated HUVECs before and during DOX administration with Simvastatin. Here,
we report that Simvastatin leads to a significant rescue of KLF2 mRNA and eNOS mRNA, as
well as a significant Ang-2 mRNA decrease. These findings are in line with a recent
published clinical study, where it was shown that co-administration of statins during DOX
treatment could alleviate the delayed cardiotoxicity after DOX administration (69). Our
findings, together with the previous work what is done, may have important implications for
the implementation for statins during, or before, the treatment of cancers with anthracyclines.
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A limiting factor of this study is that all observations are done at mRNA levels. There might
be a serious difference in expression at protein levels. However, the mRNA levels show an
excessive change after DOX treatment compared to the control, thus it’s assumable that there
is also a different expression at protein level. To make sure that these alterations are also
expressed at protein level, future experiments will quantity proteins encoded by the studied

genes after DOX treatment.

Furthermore, in this study we have used exclusively HUVECs, thus we only have looked at
the venous endothelial cells. People could argue that there might be a different expression in
the arterial side, since there is a different environment in the oxygenized blood system. To
look if our observed effects are independent of the type of cells, it’s necessary to use different
endothelial cells types in the future.

Besides, although obvious, another limiting factor of this study if the fact that all experiments
are done in vitro, to see if these effects are also clearly seen in vivo, it’s necessary to validate
our findings in a mouse model. The mouse model allows us to determine if we could prevent
the DOX related side effects after statin treatment at the same time.

Another crucial experiment what needs to be done to complete our data is to determine by
which pathway DOX regulates KLF2, in our case downregulates KLF2. From previous
studies we know that KLF?2 is regulated via the MEKS/ERKS5/MEF2 pathway (44), and statins
act via depletion of GGPP-dependent signaling pathway to upregulate KLF2 (43). If we are
able to show that DOX acts through one of these mechanisms, we could possibly prevent this
downregulation in the near future. Otherwise, there might be a new mechanism by which
DOX acts on the KLF2 expression.

To verify if the KLF2 decay after DOX treatment actually leads to the earlier mentioned side
effects, such as an increased permeability, we need to investigate if the used concentrations
lead to an increased EC-EC gap formation. Wolf et al. already showed that DOX causes an
increased permeability in the vessels and an increased LDH leakage (54). However, they used
significant higher concentrations.

As we showed that statins could save the altered KLF2 expression after DOX treatment, it
would be of great value to repeat this experiment under shear stress conditions. If we are able
to show that this rescue also exists under shear stress, we can conclude that KLF2
upregulation via either shear stress or statins acts via a different mechanism.

Conclusion

Our study documents that there is an important role for dysregulation of vascular genes in the
development of DOX-induced side effects. This is, to the best of our knowledge, the first
study that identified key molecular determinants of endothelial dysfunction, after DOX
treatment. In particular, this study demonstrated that DOX downregulates the endothelial
protective KLF2 gene, and several of its downstream target genes. Moreover, we prove that
statins could rescue the gene alterations significantly when administrated simultaneously,
which represents a potential implementable option in the clinical setting in the near future.
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